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Abstract

We discuss a filtering technique for reducing the frequency fluctuations due to the troposphere, ionosphere,
and mechanical vibrations of the ground antenna in spacecraft Doppler tracking searches for gravitational
radiation. This method takes advantage of the sinusoidal behavior of the transfer function to the Doppler
observable of these noise sources, which displays sharp nulls at selected Fourier components.

The non-zero gréwit.ai;ionhl wave signal remaining at these frequencies makes this Doppler tracking tech-
nique the’equivalentv of a series of narrow-band detectors of gravitational radiation (a zylophone) distributed
across the low-frequency band. Estimates for the sensitivities achievable with the future Cassini Doppler
tracking experiments are presented in the context of gravitational wave bufsts, monochromatic signals, and

a stochastic background of gravitational radiation.

PACS numbers: 04.80.N, 95.55.Y, and 07.60.L



I Introduction

Successful detection of gravitational waves (GWSs) has important implications both for astronomy (where
new information about astrophysical sources will be obtained) and for fundamental physics (where aspects of
relativistic theories of gravity can be tested) [1]. Current experimental efforts involve three types of detector:
resonant bars (narrow band devices sensitive at about one kilohertz center frequency), ground-based laser
interferometers (broadband devices sensitive between 10s of Hz to ~ few kilohertz), and Doppler tracking of
distant spacecraft (sensitive at much lower frequencies: ~ 10~% to 10~! Hz). For at least the next decade,
until laser interferometers with very long arm lengths can be flown in space [2], the only experimental access
to the low-frequency band will be by using Doppler tracking of spacecraft. |
In the Doppler tracking technique, the Earth and an interplanetary spacecraft act as free test masses.
The Doppler tracking system continuously measures their relative dimensionless velocity, Av/c‘ = Av/w
(here Av is the relative velocity, Av is the Doppler frequency fluctuation, and vy is the nominal frequency
of the microwave link). A gravitational wave of strain amplitude h(t) propagating through the radio link
causes small perturbations in the Doppler time series of Ay(t)/vg. These perturbations are of order h and are
replicated three times in the tracking record with a characteristic pattern that depends on the source-Earth-
spacecraft angle [3]. These three events in the time series can be thought of as due to the GW buffeting
the Earth, the GW buffeting the spacecraft, and the original Earth buffeting event transponded back to the
Earth at a time 2L/c later, where L is the distance between the Earth and the spacecraft, and c is the speed
of light. The sum of these three Doppler perturbations is zero. This overlap of the three events, and partial
cancellation, occurs for GW pulses having widths larger than about L. This sets the lower band edge, for
which one has full sensitivity, to be  ¢/L. Frequency stability of the master oscillator driving the Doppler
system and finite signal-to-noise ratio on the radio links set the high frequency band limit to be & 0.1 Hz.
Detection of GW signals in this millihertz band is compiicated by various noises. The principal noise
sources are [4-9]: ground electronics noise (including frequency standard and frequency distribution noise),
antenna mechanical noise (unmodeled motion of the antenna), thermal noise (finite signal-to-noise ratio on
the radio links), spacecraft noise (electronics and unmodeled motion of the spacecraft), and propagation
noise (phase scintillation as the radio beams pass through irregularities in the troposphere, ionosphere, and

the solar wind). Electronic and thermal noises can be made very small, and propagation noises can be



mitigated through use of higher or multiple radio frequencies to suppress or remove entirely charged particle
scintillation, and by employing water vapor radiometers to measure (and calibrate) tropospheric scintillation.
Residual uncalibrated troposphere and antenna mechanical noise are expected to be leading noise sources
in the future gravitational wave experiments performed with the Cassini project [9], a scientific mission
to Saturn sponsored by the National Aeronautics and Space Administration (NASA), the European Space
Agency (ESA), and the Italian Space Agency (ASI).

In this paper we show that, when the limiting noise sources in Doppler tracking data are the troposphere,
ionosphere, and the mechanical vibrations of the ground antenna, one can take advantage of the sinusoidal
behavior of their transfer functions to the Doppler observable to achieve lower noise levels. These transfer
functions are all equal, but different from the ”3-pulse” transfer function connecting the GW excitation
to the Doppler response. The noise transfer function has sharp nulls at specific frequencies in the power
spectrum. We show how this modulation of the noise spectrum can be exploited in a very robust way to
improve the sensitivity of a Doppler GW search for bursts, sinusoids, and stochastic background waveforms.

In Section II we derive the transfer functions of the various noise sources affecting the Doppler response.
After pointing out that the Cassini gravitational wave experiments will be limited by the residual frequency
fluctuations introduced by the troposphere, and the noisg due to the mechanical vibrations of the ground
antenna, we show how to effectively take advantage of the sinusoidal behavior of the transfer function of
these noises in the Doppler observablé in order to significantly reduce their magnitude at selected Fourier
frequencies. In Section III we estimate the one-sided power spectral density of the noise for the Cassini
gravitational wave experiments. Since Cassini will take advantage of a multilink radio system for removing
the frequency fluctuations introduced by the interplanetary plasma in the Doppler data, we find a root;
mean-squared noise (r.m.s.) sensitivity level to sinusoids of about 5.0 x 10717 in the lower part of the band.

In Section IV we present our comments and conclusions.

II Noises and Doppler Transfer Functions

The main noises affecting precision Doppler tracking observations map into the Doppler observable through
characteristic transfer functions [6, 10, 15]. In a spacecraft Doppler tracking experiment, an interplanetary
spacecraft coherently transponds back the signal it receives from the ground. That is, the spacecraft coher-

ently generates the phase of the signal it transmits back to the Earth from the signal it receives from the



ground. The contribution to the two-way Doppler tracking time series due to plasma fluctuations can be
made small via high radio frequencies or multi frequency links [4, 13]; the transfer function to the observable
is given in [3, 11]. The noise introduced by the frequency reference clock has instead the following transfer

function [6, 10, 15]

§(t —2L/c) - 6(t) , (1)

and produces an anticorrelation at time lag of 2L/c. Tropospheric scintillation and antenna mechanical
noises, which are non-dispersive and expected to be the leading noise sources in the Cassini Doppler data

[9], each have the same transfer function to the Doppler observable
6(t —2L/c) + 6(t) . (2)

For current generation precision Doppler experiments, ut;ilizing approximately 8 GHz radio links, observa-
tions in the anti solar hemisphere have significant contributions from tropospheric and extended solar wind
scintillation, while ionospheric, frequency standard, and antenna mechanical noise are secondary disturbances
in the Doppler link [11]. As an exampie, in Figure 1 we show the temporal autocorrelation function of 10-
second time resolution Mars Global Surveyor (MGS) data taken on April 17, 1997, when the two-way light
time 2L/c was equal to 504 seconds. The clear positive correlation at time lag of 504 seconds indicates that
tropospheric scintillation and possibly fluctuations induced by mechanical vibrations of the ground antenna
dominate the noise on this data set.

A consequence of the §(t)+8(t—2L/c) transfer function is that the power spectrum, the Fourier transform
of the autocorrelation function, will be modulated by cos?(w fT3), where T; = 2L/c is the two-way light time.
The inset plot in Figure 1 shows the power spectrum of the MGS data, with frequency scale marked in units
of 1/T,. No smoothing of the spectrum has been done and‘ much of its spikiness is due to estimation error
[12). The cosine-squared modulation is however evident, showing that there are nulls at odd multiples of
1/(2T3). At these frequencies, fluctuations from other noise sources will dominate the power spectrum.
If the spectral level of these secondary noises is low, there is a potentially large improvement in SNR for
gravitational wave signals having Fourier power at the nulls of the troposphere/antenna mechanical transfer

function. In its simplest form, filtering the data to pass a comb of narrow bands centered on the nulls of the



cosine-squared transfer function blocks the troposphere/antenna mechanical noise while passing the power
of gravitational wave signals at these frequencies. This is robust, in that nothing needs to be known about
the signal except that it (by hypothesis) has power at odd multiples of 1/(273). In this paper we estimate
the SNR achievable with some waveforms, while practical effects such as the change in T3 over an observing

interval, are presented in the next section.

ITI Applicability and Performance

From the considerations made in the previous section about the transfer functions of the various noise sources

affecting Doppler tracking, we can write the Doppler response y(t) to a gravitational wave in the following

form [6, 15]
vy = 2 = CoB by — wne- e mn + EE e -2n)

+C(t-2L) — C@t) + 2B(t~L) + T(t—2L) + T()

+ Ap(t—2L) + A,c(t—L) + TR(t-L) + EL(t) + P(t), (3)

where h(t) is equal to

h(t) = hy(t) cos(24) + hx(t) sin(2¢) . (4)

Here hy(t), hx(t) are the wave’s two amplitudes defined with respect to two axis, (X ,Y), chosen in the
plane of the wave, (6, ) are the polar angles describing the location of the spacecraft with respect to the
right-handed triad (X,Y, Z) (with Z orthogonal to the X — Y plane), and u is equal to cosé.

We have denoted with C(t) the random process associated with the frequency fluctuations of the clock,
B(t) the joint effect of the noise from buffeting of the probe by non gravitational forces and from the antenna
of the spacecraft, T'(t) the joint frequency fluctuations due to the troposphere, ionosphere and ground
antenna, Ag(t) the noise of the radio transmitter on the ground, A,(t) the noise of the radio transmitter
on board, TR(t) the noise due to the spacecraft transponder, EL(t) the noise from the electronics on the
ground, and P(t) the fluctuations due to the interplanetary plasma.

Since the frequency fluctuations induced by the plasma are inversely proportional to the square of the



radio frequency, by using high frequency radio signals or by monitoring two different radio frequencies
transmitted to the spacecraft and coherently transmitted back to Earth, this noise source can be suppressed
to very low levels or entirely removed from the data respectively [13]. Searches for gravitational radiation
with Doppler tracking utilizing only one radio frequency are usually performed around solar opposition in
order to minimize the frequency fluctuations induced by the plasma [14]. If the frequency of the radio
signal is Ka-Band (32 GHz) (as it will be the case with the Cassini gravitational wave experiments), and
the tracking is performed at solar opposition, at 1000 seconds integration time the plasma noise is equal to
about 7.0 x 10718 [8]. If dual frequencies are used instead, such as X (~ 8 GHz) and Ka bands for instance,
by linearly combining the Doppler data at these two radio frequencies we can entirely remove the first order
frequency fluctuations due to the plasma. The magnitude of the first higher order term is equal to about
7.0 x 10739 [13], making it totally negligible with respect to other non-dispersive noise sources [8].

If we denote with (f) the Fourier transform of the Doppler response y(t) calculated over the time of

observation 27, this is defined as follows

i = [ oy s a, (5)
-T .
and at the Fourier frequencies
(2k-1)
- (2k-1) . =1,2,3,.. 6
fk 2T2 ) k 3 ( )

Eq. (3) can be rewritten in the following approximate form [15]

Bfe)  [-14i (~1F p e L @D U] Bg) - 28(h) + T(R(GD) +

+i (-0 [2B(f) + TR(A) + Ac(f)] - A2(h) + ELUR) + B(). (@

In Eq. (7) we have assumed that the time dependence of the two-way light time is such that during
the time scale 27 over which the Fourier transform is performed the frequencies fi change by an amount
smaller than the frequency resolution Af = 1/2r. In practical experiments this is not true. In the case

of MGS, for example, the time variation of T; causes the position of the xylophone nulls to move by more



than the Fourier resolution bin in coherent integrations that are longer than about 8 hours. More relevant,
however, is the magnitude of the Tp-correlated noise with respect to that of the other noise sources. The
variation of T; smears the spectrum of the Tg-correlatgd noise, reducing the depth-of-null at the xylophone
frequencies. The T3-correlated noise level, however, is still reduced to that of the remaining noise sources in
the neighborhood of the xylophone frequencies. This will be the case for the Cassini experiments.

We note from Eq. (7) that the Fourier components of the random process T at the frequencies f; are
reduced in magnitude by the factor (7L)/(2c7). With a two-way light time of about five hundred seconds, and
an observation time of eight hours, the reduction factor for the frequency fluctuations due to the troposphere,
ionosphere, and the mechanical fluctuations of the ground antenna, is equal to 2.7 x 10~2 for the MGS data.
In the case of Cassini instead this factor could be as small as 2.5 x 1072 for the first opposition (40 days
integration, distance to the spacecraft 5.5 AU)

In Eq. (7) we provide also the antenna pattern of the remaining signal at the frequencies fi. As expected
it is equal to zero when 4 = +1, and has a maximum value of 1 at g = 0. For sources randomly distributed
over the sky, like in the case of a stochastic background of gravitational waves, we can assume the angles
(6, ¢) to be random variables uniformly distributed over the sphere and over the interval [0, 27] respectively.
The average over (0, ¢) of the antenna pattern given in Eq. (7) is equal to zero, while its variance, which we

will denote with £2(k), is equal to the following monotonically increasing function of the integer k

8

m ) k= 1,2,3,... (8)

Zik) =3 -
From Eq. (7) we can derive the expression for the expected one-sided power spectral density Sy (fi) of the
noise in the Doppler response y(t) at the frequencies fx. Under the assumption that the random processes
representing each noise source are uncorrelated with each other, and their oxie-sided power spectral densities
are as given in [8,9], we can plot Sy(fi) for different radio tracking configurations. Since Cassini will be
simultaneously tracked at X and Ka bands only at one of the three complexes of the Deep Space Network
(DSN), and tracking at the r;.maining two DSN facilities will be performed at X-Band, we conclude that for
one third of the duration of these gravitational wave experiments the effects of the interplanetary plasma
can be entirely removed from the Doppler data, while for two thirds of the observing time the plasma noise

will be one of the leading noise sources in the Doppler data. In Figure 2 we plot the one-sided spectral



density of the noise in the Cassini Doppler residual, from which the interplanetary plasma scintillations have
been removed. The continuous-line curve corresponds to the configuration in which eighty percent of noise
due to the troposphere has been calibrated out with water vapor radiometry, while the dotted-line assumes
no calibration of the troposphere. Since the power of the frequency fluctuations due to the troposphere are
reduced, at the frequencies fi, to a level smaller than the remaining noise sources, we see why the two curves
plotted in Figure 2 coincide at the frequencies f.

Figure 2 also allows us to estimate the signal-to-noise ratios for various waveforms. Gravitational waves
can be classified into three categories, depending on their temporal behavior and their time duration rel-
ative to the time of observation. A complete review of gravitational wave sources, and estimates of the
corresponding strengths of interest in the millihertz frequency band, are given in reference [1]. Here we
will briefly summarize some of the anticipated sources of gravitational waves and compare the amplitude
of the waves they are expected to radiate to the noise spectral levels presented in Figure 2 for the Cassini
experiments.

Gravitational wave bursts in the millihertz frequency band could be emitted during different astrophysical
scenarios. A collapse of a star cluster to form a supermassive black hole, for instance, might generate a
waveform whose dominant spectral components coincide with the frequencies at which the effects of the
troposphere and mechanical vibrations of the ground antenna are suppressed.

Another astrophysical scenario implying the emission of a gravitational wave burst is the fall of small
black holes into a super massive black hole, as it might happen at the énd of the merger of two galaxies
hosting at their centers a black hole. Although the temporal dependence of the gravitational wave burst
radiated during the merger is unknown, the radiation emitted by the newly formed hole during the settling
process can be described mathematically quite well [17, 18]. The radiation in this case is strongly dominated
by the black-hole quasi normal modes, whose frequencies and damping times depend on the mass of the hole
and its angular momentum. The strongest and most slowly damped of these modes is expected to be the

fundamental, whose gravitational wave tensor can be written as follows [17]

o [ eij ho e=C(—t)To sin[orf, (t—t,)], for t>t,
ht = {§ for t<t, ’ ©)

where e;; is the polarization tensor, ho is the wave’s amplitude at its time of arrival t,, and f, and 7; are the



quasi normal mode’s frequency and damping time respectively. The analytic expressions for the amplitude

hq, the frequency f, of the damped mode, and the damping time 7, are as follows [17, 18]

1/ G AE\Y?
= (7= %) (10)
fo= —-—%j‘m [1-0.63 (1 -a)°9 (11)
Tfiro=2(1-a) % >2, (12)

Here r is the physical distance to the black-hole, AE is the energy radiated in the form of gravitational waves
over the time scale 1/f,, a is the dimensionless rotation parameter, and M is the mass of the black-hole.
When a approaches 1 we have a relativistically rotating biack-hole, while a = 0 corresponds to the radiation
from a perturbed Schwarzschild hole [17). Note that, in order for the signal to perform one oscillation
before getting damped, the black-hole must rotate with an angular momentum a as large as 0.633 (the
right-hand-side of Eq. (12) must be equal to = in order to have 75 = 1/f,).

It is well known that the largest signal-to-noise ratio is achieved by applying matched filtering to the
data [19] We have calculated the signal-to-noise ratio achievable with matched filtering for the quasi-normal
mode waveform given by Eqs.(9-12) in the presence of noise having spectrum as in Figure 2. Under the
assumption that the propagation direction of the_signal is orthogonal to the radio beam, the signal-to-noise

ratio (SN R(f,, a)) given by matched filtering is [18]

_2RIp[F sin’(7-)

where we have denoted with A and B the following functions

A=2 [1 - Q:mLW] 2 (14)
2 ,
B = [1 + Q_:_lg)_gﬁi] I (15)

If we assume the energy AE emitted in the form of gravitational radiation to be proportional to the



rest energy of the black-hole (AE = eMc?), by substituting Eq. (11) into Eq. (10) it is easy to derive the

following expression for the wave’s amplitude hg

ho = wrf,

_ —a)® 1/2
¢ {[1 0.632‘ )03]6} ’ (16)

Note from Eq.(16) that, for a fixed angular momentum a, fractional radiated energy ¢, and source distance r,
the amplitude of the wave increases inversely with the center frequency, f,. This is because the mass of the
system is inversely proportional to f, (Eq.(11)). For example, for a frequency f, = 104, the corresponding
mass of the Schwarzschild black hole is about 10% M.

Owing to the spectral modulation, the signal-to-noise ratio of the filter matched to a quasi-normal mode
waveform will vary with center frequency, f,. In Figure 3 (a,b) we plot this signal-to-noise ratio verus f, for
non-rotating (a = 0) and highly-rotating (a = 0.99) waveforms for the two noise spectra given in Figure 2.
Note that the signal-to—noisé ratios have been plotted fore=10"%and r =1 Mpc; the explicit dependence

of the SNR on these two parameters is proportional to elr—2.

As an example application of Figure 3, consider gravitational radiation from quasinormal mode pertur-
bations of a black hole in the Andromeda galaxy. There is evidence that Andromeda (r = 770kpc) has
a (1 — 5) x 107M, black hole [22]. For a rapidly-rotating 5 x 107Mg black hole, f, = 0.00054 Hz. The
Cassini first opposition has 6 ~ 117° with respect to Andromeda, giving good angular response. To achieve
a matched filter SNR of 10, the quasinormal mode vibrations of the black hole in Andromeda requires an
efficiency € & 3 x 10~%. For more massive holes (up to = 10°Mg) in the Virgo cluster or a less massive hole
(7 10°My) at the Galactic center, the quasinromal mode radiation efficiency would need to be comparable,
¢ % 10~4, to achieve SN R = 10 with Cassini.

Let us now turn to the two remaining classes of gravitgtional waveforms, namely sinusoids and stochastic
backgrounds of gravitational radiation. In the case of the stochastic background with bandwidth equal to
center frequency, the sensitivity of the Doppler data at the frequencies f is given by the expected root-

mean-squared (r.m.s.) noise level o(fi) of the frequency fluctuations in the bins of width fr. This is given

by the following expression

o(fe) = [Sy(fi) £H]'?, k=1,2,3,..., (17)



where S, (fi) is the one-sided power spectral density of the noise sources in the Doppler response y(t) at the
frequency fi, as given in Figure 2.

When searching for a stochastic background of gravitational radiation, best sensitivity is achieved at
the lowest xylophone frequency. For the first Cassini opposition, fi = 9 x 10~% Hz. We get an energy
density per unit logarithmic frequency and per unit critical energy density Q [1] equal to ~ 1072, after
taking into account the effect of the r.m.s. antenna pattern (£2)!/2(k = 1) given in Eq. (8). Subsequent
Cassini oppositions have lower first xylophone frequencies, giving 2 ~ 4 x 10~3. Cassini will give the best
observational upper limit on a gravitational wave background in the millihertz band.

Sources of sinusoidal gravitational waves in the millihertz frequency band are expected to be spiraling
binary systems containing black holes. As such a system evolves, the frequency of the emitted radiation
slowly incrcases due to gravitational radiation reaction. If the source radiates near one of the frequencies fi
and is sufficiently far from coalescence then it will radiate predominantly as a sinusoid. In the millihertz band
we can describe mathematically the radiation they emit quite accurately in the Newtonian approximation.
In this framework the maximum amplitude radiated by the system, and the time it spends around a specified

frequency f are given by the following expressions

f@) _ . 5 [x ()3
7o) =" = 567G wic My (19)

where r is the physical distance to the binary system, G is the gravitational constant, ¢ is the speed of light,
n is the charaéteristic time spent by the system around the frequency f(t), and u and M are the reduced
and total mass of the system respectively. Since the maximum signal-to-noise ratio at the frequencies fi
will be achieved when the signal’s frequency does not change more than the frequency resolution A f of the
Fourier transform, the following condition must be satisfied

f'2r<§1—r. (20)

If we divide both sides of Eq. (20) by one of the frequencies fi, we obtain the following inequality relating

10



the time spent by the signal’s frequency around the frequency fi, ns, to the integration time 2 7
m>fr (27)2. (21)

Note that, the smaller the frequency at which we will perform our observation the easier will be to have binary
systems radiating sinusoidally over the period of observation. At 9.0 x 10~% Hz, and with an observation
time of 40 days, we will be able to integrate coherently for signals that spend about 4.0 x 10® seconds around
such a frequency. If we now multiply Eqs. (18, 19), we note that the product A n does not depend on the

mass of the system, and is a function only of the frequency f and the physical distance r [16]:

Sc

24y (w f)? (22)

hxn=
By assuming equal mass objects, and the smallest 5 consistent with Eq. (21) (4.0 x 102 seconds), the implied
mass for a 9.0 x 10~5 Hz radiation frequency is ~ 103M¢. For this value of 7, and an equivalent sinusoidal

sensitivity of &~ 10716 at f;, we find that such a system could be observed with SNR > 10 to a distance

= 100 kpc, which includes many members of the Local Group.

IV. Conclusions

The main result of our analysis is that, during searches for gravitational radiation, it is possible to reduce the
noise of the troposphere, ionosphere, and mechanical vibrations of the ground antenna at selected Fourier
components of the power spectrum of two-way Doppler tracking data. An equivalent sinusoidal signal
sensitivity of &~ 5.0 x 10~!7 at a frequency of 2.0 x.10~3 has been estimated for the future Cassini
gravitational wa;/e experiments, which will be performed starting in November 2001. For quasi-normal mode
burst waves, we analyzed Cassini’s sensitivity as a function of dominant wave frequency, radiation efficiency,
angular momentum, and distance. We found that fractional radiated energy ¢ greater than about 3 x 10~5
is required for reliable detections of quasinormal mode radiation from known massive black hole candidates.
For a stochastic background of gravitational radiation, at the xylophone frequency fi = 9 x 10~° Hz we
estimated an energy density per unit logarithmic frequen;:y and per unit critical energy density 2 equal to

~ 10~2 with the expected Cassini noise spectrum.
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The data analysis technique presented in this paper can be extended to a configuration with two spacecraft
tracking each other through microwave or laser links in order to minimize the noise of the onboard frequency
references. Future space-based laser interferometric detectors of gravitational waves [2], for instance, could
implement this technique as a backup option, if failure of some of their components would make the normal
interferometric operation impossible. In this case, the secondary noises are much smaller than the principal
noise source, leading to very dramatic sensitivity improvements at the xylophone frequencies. We will explore

in a forthcoming paper the strain sensitivities achievable with spacecraft to spacecraft Doppler tracking

systems.
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Figure Captions
Figure 1.

The temporal autocorrelation function of 10-second time resolution Mars Global Surveyor Doppler data
taken on April 17, 1997, when the two-way light time, T2.= 2L /e, was equal to 504 seconds. The inset plot

shows the power spectrum, with the frequency scale marked in units of 1/T3.
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Figure 2.

The estimated one-sided power spectral density of the noise that will affect the Cassini Doppler data. Curve
"a” represents the configuration in which 80 percent of the noise due to the troposphere has been calibrated
and removed by means of water vapor radiometry; curve "b” corresponds to the configuration without

calibration of the troposphere.

Figure 3.

’

Signal-to-noise ratio (SNR) for matched filtering to quasinormal mode gravitational waves incident at right
angles to the earth-spacecraft line, as a function of the normal mode frequency f, and two values of the
angular momentum parameter, a = 0 (dashed) and a = 0.99 (solid). (a) SNR for no tropospheric corrections.

(b) SNR for 80 percent of the tropospheric noise removed.

14



0.5

autocorrelation of Doppler residuals

power spectrum (linear scale)

MM

‘ frequency (uﬁlts of 1/T,)

0 1 2 3

| NRWRMMMM

time lag (seconds)



I
N
N

|
N
16)]

Iogm(Sy(f), Hz™', one—sided)

I
N
(o}

log,,(Fourier frequency, f (Hz))

b~ -
Voo
0 I‘ 1
RETR N LT NPT
o ""'::':':':"l:"""l aw'u"i:}'“ﬁ m“
/ ll|'|||:'“||“I |I|l| ||““I| mw .‘
I |
a /
Vo
Vo
W
\/
i . | .



S
e
!
P
o 4
@]
o
O
N
&
3
*
o~
N
(8]
s
- 2
'}
j
b4
o
Zz 1
(Vs
| .
Q
oot
—
- O
Q
i g
()
afpd
£
\.é-]
(o) ]
o
-2

no tropospheric calibration

1 | T

-3
“log,o(center frequency, f, (Hz))



5
Vo
|
VoS
o 4
(@]
o
(®)
N
&

3
x
o~
P
(8]
s
- 2
>
N’
x.
1
=z 1
7))
| -
)]
>
[Poud
o O
[ )]
e
(]
)
£
\6_1
o
o

-2

3b

—
_— e -

—

80% trdpospheric

calibration

-3
log,o(center frequency, f, (Hz))



